REF: 7115WW VERSION [1.0] OCTOBER 23, 2024

SOIL AND SITE ASSESSMENT FOR ONSITE WASTEWATER DISPOSAL – PROPOSED SUBDIVISION

61 FOORD ROAD, RUN-O-WATERS, NSW

LGA: Goulburn-Mulwaree

Lot 336 DP 750015

Project Manager: Tina Dodson

HARRIS ENVIRONMENTAL CONSULTING 6/1 MEMORIAL DRIVE, SHELLHARBOUR CBD, 2529, NSW TEL: (02) 4236 0954 Info@hec.eco

VERSION CONTROL

Title	Soil and Site Assessment for Onsite Wastewater Disposal – proposed subdivision			
Site address	61 Foord Roa	ad, Run-O-Waters, NSW		
Proposed development	Proposed 2-Lot subdivision			
Created By	Duncan Mey	Duncan Meyer B. SocSc. GeogEnvMgmt (Hons) (UKZN)		
Approved by:	Sean Harris Msc Env Science (UOW), Grad dip Nat Res (UNE), BscAppSc, Agriculture (HAC)			
Date Created	Wednesday, 23 October 2024			
Version Number	Modified ByModifications MadeDate ModifiedStatus			
[1.0]	D.M	Issue for client review	17/05/2024	Complete
				-
				-

Limitations

The findings and recommendations in this report are based on the objectives and scope of work outlined above. Harris Environmental Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. The report and conclusions are based on the information obtained at the time of the assessment. Changes to the site conditions may occur subsequent to the investigation described herein, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time. The results of this assessment are based upon site assessment conducted by HEC personnel and information provided by the client and site management. All conclusions regarding the property are the professional opinions of the HEC personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, HEC assumes no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of HEC, or developments resulting from situations outside the scope of this project.

Copyright

© Harris Environmental Consultants 2024

This report and accompanying plans were prepared for the exclusive use of Mr I & Mrs M Cumming. No extract of text of this document may be reproduced, stored or transmitted in any form without the prior consent of Harris Environmental Consulting Pty. Plans accompanying this document may not be reproduced, stored or transmitted in any form unless this copyright note is included.

TABLE OF CONTENTS

1.	Intr	oduction
2.	Site	e Information7
3.	Site	e Assessment
4.	Soi	I Assessment
5.	Sur	nmary Of Soil And Site Constraints 10
6.	Sys	stem Design11
6	.1	Wastewater Treatment System11
6	.2 Lo	ocation Of Proposed Awts11
6	.3	Installation Of Pipes 12
7.	Sizi	ing The Irrigation Area13
8.	Cor	npletion Of Works
9.	Sur	nmary
10.	Ref	erences

TABLES

TABLE 1	MINIMUM PIPE DIAMETER AND GRADE CALCULATIONS	12
TABLE 2	MINIMUM PIPE DEPTH FOR TRAFFICABLE AREAS	12
TABLE 3	PROPOSED IRRIGATION AREAS	13

FIGURES

FIGURE 1	LOCATION OF THE PROPOSED SUBDIVISION	.5
FIGURE 2	PROPOSED SUBDIVISION	.6
FIGURE 3	OUTCOMES OF NORBE ASSESSMENT	0

APPENDICES

APPENDIX I	DESIGNER PRODUCER STATEMENT	16
APPENDIX II	EXAMPLE OF INSTALLATION CERTIFICATE	18
APPENDIX III	SUBSURFACE IRRIGATION	19
APPENDIX IV	IN-FIELD SOAKAGE PIT OPTIONS	20
APPENDIX V	GENERAL RECOMMENDATIONS TO MANAGE WATER QUALITY AND QUANTITY	21
APPENDIX VI	REQUIRED BUFFERS	22
APPENDIX VI	I WATER BALANCE	24
APPENDIX VI	II NUTRIENT BALANCE	25
APPENDIX IX	SITE PLAN- SHEET 1	26
APPENDIX X	SITE PLAN- SHEET 2	27
APPENDIX XI	SITE PLAN- SHEET 3	28
APPENDIX XII	STANDARD DRAWING – SUBSURFACE IRRIGATION	29
APPENDIX XII	I NORBE ASSESSMENT OUTCOMES	30

1. INTRODUCTION

This Site and Soil Assessment for On-site Wastewater was prepared by Harris Environmental Consulting at the request of Tina Dodson. It relates to the proposed 2-Lot subdivision of Lot 336 DP 750015 at 61 Foord Road, Run-O-Waters, NSW.

Fieldwork was undertaken by Harris Environmental Consulting (HEC) on the 26th of September 2024. This plan is based on the primary investigation of the soils, topography and hydrology of the site observed on the day of inspection. Soil samples and photos of the site were taken for further analysis.

The wastewater disposal area has been sized for a conceptual 4-bedroom dwelling (within building envelope) on the proposed lot. Therefore, an Aerated Wastewater Treatment System (AWTS) for wastewater treatment and subsurface irrigation is proposed for a potential 4-bedroom dwelling on the proposed vacant lot.

This report was prepared to demonstrate that the proposed subdivision can achieve compliance with the relevant requirements for on-site wastewater management. The proposed lots will henceforth be referred to as Lots 1 and Lot 2. Proposed

Only proposed Lot 1 will be considered in this report, as the existing dwelling on proposed Lot 2 is connected to its own on-site wastewater system and does not seem to be near the proposed boundaries.

Harris Environmental Consulting (HEC) was commissioned to undertake this Soil and Site Assessment for On-Site Wastewater Management and System Design in accordance with:

- Goulburn Mulwaree Regional Council Development Control Plan (2009); and
- Local Government Act 1993; and
- Australian Standard AS/NZS 3500 Plumbing and Drainage 2018; and
- Environment and Health Protection Guidelines (1998) On-site Sewage Management; for Single Households (Department of Local Government); and
- AS/NZ 1547:2012 On-site wastewater management (Standards Australia, 2012); and
- WaterNSW (2019), Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice.

Location of the site is in Figure 1 and the proposed subdivision is in Figure 2.

FIGURE 1 LOCATION OF THE PROPOSED SUBDIVISION

Source: SixMaps

FIGURE 2 PROPOSED SUBDIVISION

2. SITE INFORMATION

Owners:	Mr I & Mrs M Cumming		
Project Manager:	Tina Dodson		
	Premise		
	P: 0400 321 109		
	E: tina.dodson@premise.com.	au	
Size of property:	~9.7 ha		
Legal title:	Lot 336 DP 750015		
Local Government:	Goulburn-Mulwaree Council		
Water supply:	Tank		
Design Wastewater load and	No. bedroom in the proposed Assume 4 bedrooms		
daily wastewater (L/day):	building envelope on the		
	proposed vacant lot 1		
	(As per WaterNSW)	= 800 L/day	
Proposed wastewater treatment:	AWTS		
Proposed wastewater disposal:	Subsurface irrigation		
Date site assessed:	26 September 2024		
Date report prepared:	23 October 2024		
Report prepared by	Duncan Meyer B. SocSc. GeogEnvMgmt (Hons) (UKZN)		
Site assessor:			
	Sera Msc Env Sci	ence (UOW), Grad dip Nat Res (UNE),	
	BscAppSc, A	Agriculture (HAC)	
	Sean Harris		

3. SITE ASSESSMENT

Climate - rainfall	Goulburn TAFE median monthly rainfall		
Climate - evaporation	SCA Zone 3 evaporation data		
Flood potential	Proposed wastewater treatment system is above 1 in		
	100-year flood level; minor limitation. Proposed		
	wastewater disposal area above 1 in 20-year flood		
	level; minor limitation.		
Frost potential	The site is not known to be subject to severe frosts,		
	minor limitation		
Exposure	Southwestern aspect – minor limitation		
Slope	8.5%; minor limitation for treated wastewater disposal		
Landform	Side slope, minor limitation		
Run-on and seepage	Minor upslope stormwater run-on; minor limitation		
Erosion potential	Minor erosion potential		
Site drainage	Moderate to well drained soil profile; minor limitation		
Evidence of fill	No evidence of fill; minor limitation		
Domestic groundwater use	No groundwater bores within 100m		
Surface rock	No surface rock; minor limitation		
Area available for effluent	Area available for effluent disposal within designated		
disposal	Effluent Management Area (EMA), minor limitation		

4. SOIL ASSESSMENT

Method:	Mechanical augur/crowbar/shovel				
Depth to bedrock (m):	1000mm to restrictive layer; minor limitation				
Depth to high soil water	No groundwater or subsoil mottling encountered at a depth of				
table:	1000mm; minc	or limitation			
Coarse (%):	No coarse frag	ments in subsoil, minor limitatior	ו		
pH (soil/water):	pH 6-6.5; mino	r limitation			
Electrical conductivity:	<4, indicating s	salinity is not a constraint; minor	limitation		
Salinity hazard:	No salinity info	rmation available.			
Domestic groundwater	The Departme	nt of Primary Industries Office of	Water search of		
use:	groundwater b	ores found there are no known g	groundwater		
	bores within 1	00m of the proposed effluent ma	nagement area		
Geological unit:	Residual Depo	sits - A weakly consolidated reg	olithic residuum		
(From Department of	such as soil or	saprolite mostly developed in-si	tu as a result of		
Regional New South	advanced wea	thering and/or pedogenesis.			
Wales)					
Soil landscape:	Monastery Hill	Soil Landscape – The landscape	e has formed on		
(From eSPADE by	teschenite (dol	lerite) intrusions. On crests and s	sideslopes are		
NSW DPIE)	duplex orange	-coloured soils with acid to alkali	ne reaction, no		
Avertualian Cail	development o	of A2 norizons and massive to me	baerately		
	Structured upp	er Briorizons. These are similar	lo yellowish		
Classification	Chocolate Solis. Below about 1 m an alkaline mottled grey clay				
	footolonoo and	Solis, Grey Clays and Alluvial S	tion on this		
	landscape can	he found in Scown Murphy and	Ion on this		
	(1988)	be found in Scown, Mulphy and	5011131011		
	(1000).				
(From Geoscience	Soils belonging to the Kurosols order - Duplex soil with an				
Australia Portal)	acidic subsoil of greater clay content than the topsoil. Moder				
	capacity to ads	sorb phosphate. The lower hvdra	ulic conductivity		
	of the subsoil of	can lead to interflow. however if t	he design of the		
	absorption field	d is on the basis of subsoil hydra	ulic properties		
	(as is normally the case), this is a moderate risk soil.				
Surface rock:	No surface roc	k in proposed effluent managem	ent area		
Soil Profile	Laver 1 DIR				
(Representative of all	Texture	Loam			
proposed lots)	Colour	Dark brown			
	Depth	0-300mm	N/A		
	Structure	Moderately structured			
	Coarse frag.	N/A			
	Layer 2 D		DIR		
	Texture	Clay loam			
	Colour	Tan			
	Depth	300-1000mm	3.5mm/day		
	Structure Moderately structured				
	Coarse frag.	N/A			

Photo 1 On-site soil assessment

Photo 2 Looking north over the proposed effluent area

Harrisenvironmental.com.au Tel: (02) 4236 0954 E: Info@hec.eco

OCTOBER 23, 2024 Ref WW6481 page | 9

5. SUMMARY OF SOIL AND SITE CONSTRAINTS

There are no major soil or site constraints that would prevent the installation of an Aerated Wastewater Treatment System (AWTS) for wastewater treatment and subsurface irrigation for treated wastewater disposal for the proposed building envelope.

The proposed subsurface irrigation is proposed at a location that is compliant with the buffers and setback distances required by Goulburn-Mulwaree Council and Water NSW. This includes:

- More than 100m from permanent watercourses, 40m from drainage depressions
- 4m from downslope driveways/boundary lines
- 3m from upslope driveways/ boundary lines
- 6m from downslope buildings and 3m from upslope buildings

The light clay subsoil has suitable permeability and nutrient absorption properties for this method of wastewater treatment and disposal.

The wastewater management system was modelled in the WaterNSW NORBE Assessment model with the proposed wastewater disposal area and found to be compliant. See Appendix for NORBE assessment outcome report.

The NorBE assessment was conducted assuming adequate stormwater quality improvement devices (SQIDs) are included in the design.

FIGURE 3 OUTCOMES OF NORBE ASSESSMENT

Note: The NORBE model does not represent the actual orientation and position of the proposed subsurface irrigation area and is unable to do so.

6. SYSTEM DESIGN

6.1 WASTEWATER TREATMENT SYSTEM

An Aerated Wastewater Treatment System is proposed for wastewater treatment for each future lot. The owner will be required to provide the Council with the AWTS manufacturer's specifications of the proposed treatment system. (Information on proposed AWTS can be obtained from the manufacturer or NSW Heath Register of Accredited Sewage Management Systems at

http://www.health.nsw.gov.au/publichealth/environment/water/waste_water.asp.

The owner will need to lodge an application to install/operate a Sewage Management System under the Local Government Act 1993, Section 68. Council will require the owner to have selected an AWTS manufacturer and provide Council with the necessary plans and specifications including NSW Health Accreditation, tank dimensions and capacity, operation and maintenance details, plus Licensed Plumber's name, address, phone number and license number.

The AWTS will be installed and maintained in accordance with Section 5 of the guidelines 'Onsite Sewage Management for Single Households' (Department of Local Government, 1998) and AS/NZS 1547-2012 'On-site Domestic Wastewater Management' (Standards Australia, 2012). Upon approval from Goulburn-Mulwaree Council, the owner is to enter into a servicing contract with an approved servicing agent for the life of the system. Copies of the written service reports should be lodged with Goulburn-Mulwaree Council following each quarterly service.

6.2 LOCATION OF PROPOSED AWTS

The location of the AWTS should be decided in conjunction with the licensed plumber in consultation with the property owner. The AWTS must be positioned on a stable, level base and be downslope of the building so there is sufficient fall from drainage outlets in the dwelling. The location of AWTS must:

- Be at least 1.5m from any building.
- Have a power supply (and telephone line if telemetry or an automated monitoring/ alarm is fitted), will be required to deliver power to the treatment unit.
- Be located above the 1% AEP (1:100) flood contour.

AWTS installation must comply with the manufacturer's recommendations, AS/NZS 3500.2:2018 Plumbing and Drainage Part 2 Sanitary Plumbing and Drainage' and Council requirements.

6.3 INSTALLATION OF PIPES

The sewer pipes between the plumbing amenities, AWTS and irrigation area must conform with 'AS/NZS 3500(Set):2018 Plumbing and Drainage Set' specifying the nominal pipe sizes and respective minimum grades. Table 1 contains these specifications.

In addition, where a sewer carrying untreated wastewater to a treatment system is longer than 60 metres, the minimum grade should be doubled, and inspection ports should be installed at least every 30 metres or at an angle or change of grade.

The sewer pipes between the plumbing amenities, AWTS and irrigation area must be buried at a depth that provides protection against mechanical damage or deformation, in accordance with 'AS/NZS 3500.2:2018 Plumbing and Drainage Set'. Table 2 shows the minimum pipe depth for trafficable areas.

TABLE 1 MINIMUM PIPE DIAMETER AND GRADE CALCULATIONS

Nominal pipe size (DN)	Minimum grade %	Minimum grade ratio		
65	2.5	1:40		
80	1.65	1:60		
100	1.65*	1:60		
125	1.25	1:80		
150	1.00	1:100		
* Except for drains from septic tanks, sewage treatment plants and unvented discharge pipes from tundishes, which may have a minimum grade of 1%, Source: 'AS/NZS 3500.2:2018 Plumbing and drainage Part 2 Sanitary plumbing and drainage' Table 3.4.1. NB: pipe grades are expressed as a percentage of vertical to horizontal distances.				

TABLE 2 MINIMUM PIPE DEPTH FOR TRAFFICABLE AREAS

Location	Minimum depth of cover (mm) for all materials other than cast iron	
Where subject to vehicular traffic	500	
Elsewhere	300	
Source: 'AS/NZS 3500 (Parts 0-4):2018 Plumbing and drainage Set'. Table 3.7.2 Minimum Cover for Buried Pipes'		

The installation is to be done in accordance with the AWTS manufacturer's Installation Manual. The wastewater treatment unit is to be buried near ground level but 100mm above ground level to avoid accumulation and ingress of stormwater under the tank lid.

A buried 25mm poly pipe will run from the AWTS/filter and manifolds.

7. SIZING THE IRRIGATION AREA

The irrigation area needed to manage the design flow of **800L/day** was calculated using monthly water and nutrient balance, following the method described in DLG (1998). Soil texture classification for Design Irrigation Rate is from ASNZ1547(2012).

The *water balance* requires a **370m**² irrigation area as shown in Table 3 based on the following variables:

- Goulburn TAFE median monthly rainfall.
- SCA Zone 3 monthly average evaporation; and
- Slope is <10% so no DIR reduction required.
- Application rate of 24.5mm/week or 3.5mm/day for clay loam soils.

The *nitrogen balance* requires a **329m**² irrigation area as shown in Table 3 based on the following variables:

- AWTS will reduce Total Nitrogen to 27mg/L; and
- Vegetative rate for managed pastures is assumed to be 240kg/N/ha/year

The *phosphorus balance* requires **233.6m**² irrigation area as shown in Table 3 based on the following variables:

- AWTS will reduce Total Phosphorus to 12mg/L;
- P-sorption of 400mg/kg for clay loam subsoil;
- Bulk density of 1.5g/cm² for clayey soils;
- Soil depth of 1000mm. Crop uptake is assumed to be 30kg/ha/annum; and
- 50-year design life of system.

Wastewater Source	Design wastewater load (L/day)	Water balance requires irrigation area (m²)	Nitrogen balance requires irrigation area (m²)	Phosphorus balance requires irrigation area (m ²)	Required effluent disposal area – largest of the three methods (m ²)
Proposed Lot 1	800	370	329	233.6	370

TABLE 3PROPOSED IRRIGATION AREAS

In accordance with WaterNSW (2019), the irrigation area should be sized using a hydraulic balance, with a dedicated nutrient uptake area downslope and/or around the irrigation field, determined by the difference in area between the nutrient load and hydraulic load area. WaterNSW (2019) states *that this approach will help ensure that the vegetation is maintained, at least on the area required to satisfy the hydraulic balance and reduce the likelihood of vegetation die-off over the whole area in extended dry periods.* Given the hydraulic balance is the most limiting in this Assessment, no nutrient uptake area will be required.

The NorBE Assessment for the proposed dwelling (Figure 2) nominated the *irrigation area* to be 229m². This is the minimum area that NorBE requires to be installed. By contrast, the

water balance undertaken for this assessment (see above and Appendix) calculates the need for a **370m²** irrigation area.

The proposed location and setback distances of the land application area relevant to the site are to be consistent with the requirements in the Conditions of consent, Wingecarribee Shire Council Development Control Plan, WaterNSW and this report.

8. COMPLETION OF WORKS

The last stage of this process involves submitting an Installation Certificate provided by the installer. This is to certify that the systems have been installed according to the System Design. A copy of the installation certificate must be provided to the council and the system designer. A council certifier will make a final inspection before the system is approved for use.

The treatment and application systems must be installed by a contractor(s) licensed by NSW Fair Trading. That could be a licensed plumped or a licensed irrigation contractor (or both), each with at least three years' experience in effluent disposal.

9. SUMMARY

This assessment has demonstrated that on-site wastewater management can be undertaken on the proposed 2-lot subdivision. This assessment recommends the following:

- Installation of an aerated wastewater treatment system capable of treating at least 800L/day for the proposed building envelope on proposed lot 1; and
- Installation of **370m**² of subsurface irrigation for treated wastewater disposal, as described in the Appendix and shown on the Site Plan.

10. **REFERENCES**

Department of Local Government (1998) *On-site Sewage Management for Single Households*. NSW Government.

Standards Australia (2012) Australian/New Zealand Standard 1547:2012 On-site domestic wastewater management. Standards Australia.

NSW Health Septic Tank Accreditation Guidelines (2001).

Hazelton, P.A and Murphy, B.W ed. (1992) *What Do All the Numbers Mean? A Guide for the Interpretation of Soil Test Results.* Department of Conservation and Land Management (incorporating the Soil Conservation Service of NSW), Sydney.

WaterNSW (2019), Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice)

Goulburn Mulwaree Regional Council Development Control Plan (2009)

APPENDIX I Designer Producer Statement

DESIGN PRODUCER STATEMENT

On-site Wastewater and/or Effluent Disposal System Design

ISSUED BY: TO: DA NO:	Harris Environmental Goulburn-Mulwaree	Consulting Council
TO BE SUPPLIED TO: IN RESPECT OF:	Tina Dodson Soil and Site Assess subdivision, 61 Foord	ment for Onsite Wastewater Disposal – proposed d Road, Run-O-Waters, NSW
AT:	Lot/DP:	Lot 336 DP 750015

Harris Environmental Consulting has been engaged by Tina Dodson to provide the technical design details for an on-site wastewater system.

The design has been carried out in accordance with:

- WaterNSW, 2019 'Designing and Installing On-Site Wastewater Systems: A WaterNSW Current Recommended Practice'.
- DLG, 1998 'Environment and Health Protection Guidelines: On-site Sewage Management for Single Households'
- AS/NZS 1547:2012 'On-site Domestic Wastewater Management'

For details of site assessment and design, refer to the Soil and Site Assessment for Onsite Wastewater Disposal – proposed subdivision, 61 Foord Road, Run-O-Waters, NSW , dated October 23, 2024

This System Design was prepared with reference to WaterNSW, 2019 'Designing and Installing On-Site Wastewater Systems: A WaterNSW Current Recommended Practice'.

This is an independent design, covered by a current policy of Professional Indemnity Insurance.

DECLARATION:

I believe on reasonable grounds that this design has been carried out in accordance with agency and council requirements, and best practice in on-site wastewater design principles and procedures.

NOTE: This statement does not approve the installed system.

Under certain conditions, **Harris Environmental Consulting** is available to certify the installed system. These conditions include:

- the technology supplier(s) take(s) full responsibility for the stated quality and performance of technologies and other equipment supplied.
- the installer(s) take full responsibility for installing the system as specified by all conditions of consent and Harris Environmental Consulting design reports unless departure from the station specification(s) is subsequently agreed between the installer and Harris Environmental Consulting and approved by the consent authority.
- **Harris Environmental Consulting** is to be informed before installation, and engaged, under separate contract, if required to supervise installation of all specified system components.

DISCLAIMER:

Approval is to be sought from **Harris Environmental Consulting** should variations to the specification and layout in this report/ drawing be considered necessary by the installer before or at the time of installation. Failure to do so will invalidate the Design Producer Statement and **Harris Environmental Consulting** will no longer take responsibility for the design.

The client is to make full disclosure of relevant information on existing and/or proposed activities on the site that will influence estimation of likely daily wastewater quantity (based on the number of potential bedrooms and other wastewater producing activities) and quality (in particular any chemicals in the water supply and/or wastewater

stream potentially toxic to biological wastewater processes). This design is based on the site assessment carried out by **Harris Environmental Consulting.**

Subsequent changes to the site that might affect the topography and soil profiles are to be notified by the client. Failure, by the Client, to provide this information will invalidate this Design Producer Statement.

Name	Sean Harris, Harris Environmental Consulting				
Signature	Senti	Msc Env Science (UOW), Grad dip Nat Res (UNE), BscAppSc, Agriculture (HAC)			
Title:	Soil and Site Assessn 61 Foord Road, Run-	nent for Onsite Wastewater Disposal – proposed subdivision, O-Waters, NSW			
_					

Date:

October 23, 2024

APPENDIX II EXAMPLE OF INSTALLATION CERTIFICATE

COMPLETION OF WORKS

INSTALLATION CERTIFICATE

On-site Wastewater and/or Effluent Disposal System

(to be prepared and issued by the licensed installer)

ISSUED BY:	On-Site System Installers Pty Ltd
TO BE SUPPLIED TO:	Catchment Council (DA No. XXX/YYYYY)
IN RESPECT OF:	Mr & Mrs Consumer, On-site wastewater service for 1 Rural Road, Septicville (Catchment Council)
SITE DETAILS:	Lot/DP: XXX/YYY Description:[insert relevant description]

DESCRIPTION OF PROJECT:

- Installation of an on-site wastewater system for a [insert relevant proposal e.g. a four bedroom dwelling].
- Treatment system: NSW Health accredited [insert relevant system and model number].

INSTALLED IN ACCORDANCE WITH: Conditions of consent and Wastewater System Designers Pty Ltd System Design, 1 Rural Road, Septicville, dated DD/MM/YYYY

DATE OF SITE INSTALLATION INSPECTION: DD/MM/YYYY

REPORT: Variations: None. Installed as indicated on Site Plan in System Design.

DECLARATION:

I believe on reasonable grounds that all of the wastewater works have been completed in accordance with Council Consent Number 123456 and Wastewater System Designers Pty Ltd System Design dated DD/MM/YYY.

Name:

Title:

Signature:

For: On-Site System Installers Pty Ltd Date: DD/MM/YYYY cc: Mr & Mrs Consumer

APPENDIX III SUBSURFACE IRRIGATION

- i) If wastewater is split into equal zones, each zone must receive an even proportion of wastewater, using a sequencing valve, such as a water rotor or similar.
- ii) Immediately after the AWTS, a disc filter or a 100-to-150-micron filter is to be installed (ie, before the sequencing valve). The filter must be cleaned regularly (at least every 3 months).
- iii) The distribution pipe from the AWTS to the water rotor shall consist of a 25mm uPVC or polythene pipe, buried 300mm underground. Where vehicles pass over the line, it should be 450mm for light traffic and 500mm for heavy traffic.
- iv) Pressure compensating subsurface drip line is used with emitters and laterals at approximately 750mm spacing's (maximum of 1000mm) and buried to a depth of 100-150mm below finished ground level (in accordance with ASNZ1547:2012).
- v) The drip line is to be impregnated with root inhibitor or include a tech filter that dispenses a root inhibitor (a chemical injector assembly or impregnated emitter tube) to protect drip line from root ingress.
- vi) Air release valves should be located at the highest point and flush valves at the lowest point of each sub-surface zone and shall be contained within a durable protective housing with a lilac lid to indicate wastewater.
- vii) Additional air/vacuum valves, pressure-reducing valves and non-return / tube nonleakage valves are to be included into the design as needed. ie., where the effluent irrigation area is located above the treatment system or pump well, a non-return valve.
- viii) The system must have capacity to enable flushing to remove any suspended solids and organic growth that may accumulate.
- ix) The effluent irrigation system should be tested to ensure there is uniform effluent delivery to all parts of the irrigation area.
- x) The effluent management area must be fenced off from livestock and vehicles.
- xi) The irrigation area should be vegetated with grass before commissioning. The grass within the irrigation should be mown on a regular basis and dispose of clippings outside the irrigation area.

APPENDIX IV IN-FIELD SOAKAGE PIT OPTIONS

Part No. Dimensions	Part No. Dimensions	Part No. Dimensions
HR0690-SVBRW Bottom: 185mm Depth: 150mm	0690VBRW Bottom: 215mm Depth: 220mm	HR0910VBRW Bottom; 335mm Depth: 255mm
OVERLAY LID	OVERLAY LID	OVERLAY LID
HRBOG-GSQVBRW OVERLAY LID	Top: 150mm Depth: 150mm	HR606SQVBRW Top: 150mm Depth: 210mm OVERLAY LID
Part No. HR309-8VBRW OVERLAY LID	Dimensions Top. 215mm Depth: 215mm	Part No. Dimensions HR9095QVBRW Top: 215mm Depth: 260mm OVERLAY LID
Part No. Dimensions HR1419-6VBRW With: 305mm Length: 420mm Depth: 160mm INSERT LID NERT LID		

APPENDIX V GENERAL RECOMMENDATIONS TO MANAGE WATER QUALITY AND QUANTITY

Insinkerator style kitchen garbage disposal units should be avoided as they increase water consumption and raise the nutrient and BOD concentrations of household effluent.

Water conservation can reduce the volume of wastewater that needs to be treated and discharged on site. The residence should include appliances that are rated under the Water Efficiency Labelling and Standards (WELS) Scheme that includes:

- i. 4-star dual-flush toilets;
- ii. 3-star showerheads;
- iii. 4-star taps (for all taps other than bath outlets and garden taps);
- iv. 3-star urinals; and

v. Water-efficient washing machines and dishwashers are to be specified and used wherever possible.

Chemical cleaning compounds and other chemicals that enter the treatment system should be low in phosphate and salt. Anti-bacterial chemical cleaning compounds and other chemicals that enter the treatment system should be avoided. This includes chlorine, disinfectants, bleaches etc.

APPENDIX VI REQUIRED BUFFERS

The following buffers must be applied when installing all onsite sewage management systems in accordance with WaterNSW and the Goulburn-Mulwaree Council's Development Control Plan.

Table 2.6 – Bu	Table 2.6 – Buffer distances								
Feature	Level of Effluent effluent application treatment method		Buffer distance (minimum)	A	chievab	le			
Buildings,	Primary	Subsoil	2.0m downslope and where flat, or 6.0m upslope of the feature	🗆 Yes	n No	□ N/A			
retaining walls	Secondary (disinfected)	Subsurface and surface (including drip or trickle) irrigation	2–6m (<3m only for drip irrigation on low rate)	a Yes	no No	□ N/A			
Primary Premises boundaries, paths and		Subsoil	3.0m downslope and where flat, or 6.0m upslope of the feature; 15m to recreation areas, if by LPED irrigation	🗆 Yes	n No	□ N/A			
walkways, recreation areas	Secondary (disinfected)	Subsurface irrigation	3.0m downslope and where flat, or 4.0m upslope of the feature	🗆 Yes	n No	□ N/A			
		Surface irrigation	15m up- or downslope of the feature	🗆 Yes	n No	□ N/A			
In ground potable water tanks,	Primary	Subsoil	15m and downslope from water tank or pool	🗆 Yes	n No	□ N/A			
in ground swimming pools	Secondary (disinfected)	Subsurface and surface irrigation	4.0m - should not be located upslope of feature	D Yes	n No	□ N/A			
Watercourse , lakes and	Primary	Subsoil	100m from the high water level	🗆 Yes	🗆 No	□ N/A			
the full supply level for all water supply reservoirs	Secondary (disinfected)	Subsurface and surface irrigation	100m from the high water level	a Yes	n No	□ N/A			
Bore or well	Primary	Subsoil	100m	D Yes	D No	DN/A			
licenced for domestic^ consumption	Secondary (disinfected)	Subsurface and surface irrigation	100m	🗆 Yes	n No	0 N/A			

Feature	Level of effluent treatment	Effluent application method	Buffer distance (minimum)	A	chievat	le
Drainage depressions,	Primary	Subsoil	40m from the high water level	🗆 Yes	□ No	□ N/A
tarm dams and roadside drainage and lot scale stormwater quality improvemen t devices	Secondary (disinfected)	Subsurface and surface irrigation	40m from the high water level	□ Yes	□ No	□ N/A
∧ If within 100 r analysis is requi 2001 'An impro is taken to med	netres of a bore ired using an ap wed viral die-off an for drinking, v	or well licenced for ppropriate methodo f method to estima vatering of edible p	or domestic consum ology, such as Crom te setback distance olants etc.	ption, a d er, Gardr s'. Domes	raw-dov her and E stic cons	vn Beavers, umption

SOIL AND SITE ASSESSMENT FOR ONSITE WASTEWATER DISPOSAL - PROPOSED SUBDIVISION ON 61 FOORD ROAD, RUN-O-WATERS, NSW

APPENDIX VII WATER BALANCE

Nominated Area Water Balance for Zero Storage																
Site Address:	61 Foord	d Road, Rur	n-O-Waters													
INPUT DATA																
Design Wastewater Flow	Q	800	L/day													
Design DIR (from AS/NZ 1547:2012)	DIR	24.5	mm/week													
Daily DIR		3.5	mm/day													
Nominated Land Application Area	1	370	m sa													
Rainfall Data Station (Monthly Medians)	_	Goulburn TAF	F													
Evaporation Data (Monthly Average)		SCA Zone 3	}													
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D	1	days	31	28	31	30	31	30	31	31	30	31	30	31	365.0
Rainfall	Р	1	mm/month	58.2	49.7	55.2	26.6	35.2	39	38.2	46.5	45.6	47.2	64	49	505.4
Evaporation	E	۱	mm/month	187	145	124	79	51	34	39	61	88	123	146	185	1262.0
Crop Factor	С			0.80	0.75	0.70	0.65	0.60	0.60	0.60	0.60	0.65	0.70	0.75	0.80	
INPUTS																
Precipitation	(P)		mm/month	58.2	49.7	55.2	26.6	35.2	39	38.2	46.5	45.6	47.2	64	49	505.4
Effluent Irrigation	(W)	(Q x D) / L	mm/month	67.0	60.5	67.0	64.9	67.0	64.9	67.0	67.0	64.9	67.0	64.9	67.0	789.2
Inputs		(P+W)	mm/month	125.2	118.7	116.7	120.1	93.6	100.1	106.0	105.2	111.4	112.6	112.1	131.0	1352.8
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	150	109	87	51	31	20	23	37	57	86	110	148	908.3
Percolation	В	(DIR/7)xD	mm/month	108.5	98	108.5	105.0	108.5	105.0	108.5	108.5	105.0	108.5	105.0	108.5	1277.5
Outputs		ET+B	mm/month	258.1	206.75	195.3	156.4	139.1	125.4	131.9	145.1	162.2	194.6	214.5	256.5	2185.8
Storage remaining from previous month			mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage	S	(P+I)_(FT+B)	mm/month	-132.0	-88.0	-78.6	-36.3	-45.5	-25.3	-25.9	-30.0	-50.8	-82.0	-102.4	-125.5	
Cumulative Storage	M	(i · i)-(L I+D)	mm	-132.9	-00.0	-73.0	-50.5		-20.0	-20.9	-39.9	-30.8	-02.0	0.0	0.0	0.00
Largest M	(V)		mm	0.00	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	5.00
g		(V x L)/1000	m ³	0.0												

APPENDIX VIII

NUTRIENT BALANCE

61 Foord Road, R	un-O-Waters		
800	L/day		
27.0	mg/L		
0.0216	kg/d		
7.884	kg/yr		
329	m2	0.03285	ha
0.024	kg/m2/yr		
240.0	kg/ha/yr		
240	kg/ha/yr		
0	kg/ha/yr		
0.00	kg/yr		
61 Foord Road R	un-O-Waters		
800	L/dav		
12	ma/l		
9600	mg/dav		
3504	g/vear		
400	ma/ka		
15	a/cm3		
1500	ka/m3		
233.6	m2		
1	m		
233 600	m3		
200.000			
350400	ka		
140160	q		
Grass	v		
30	kg/ha/yr		
700.8	g/yr		
2803	a/vr		
50.0	vears		
	61 Foord Road, R 800 27.0 0.0216 7.884 329 0.024 240.0 240.0 0 0.00 61 Foord Road, R 800 12 9600 3504 400 1.5 1500 233.6 1 1 233.600 140160 Grass 30 700.8 2803 50.0	61 Foord Road, Run-O-Waters 800 L/day 27.0 mg/L 0.0216 kg/d 7.884 kg/yr 329 m2 0.024 kg/m2/yr 240.0 kg/ha/yr 240 kg/ha/yr 0 kg/ha/yr 0 kg/ha/yr 0 kg/ha/yr 0 kg/pa/yr 61 Foord Road, Run-O-Waters 61 Foord Road, Run-O-Waters 800 L/day 12 mg/L 9600 mg/day 3504 g/year 400 mg/kg 1.5 g/cm3 1500 kg/m3 233.6 m2 1 m 233.600 m3 350400 kg 140160 g Grass 30 kg/ha/yr 700.8 g/yr 200 kg/yr	61 Foord Road, Run-O-Waters 800 L/day 27.0 mg/L 0.0216 kg/d 7.884 kg/yr 329 m2 0.024 kg/m2/yr 0.024 kg/ha/yr 240.0 kg/ha/yr 240.0 kg/ha/yr 0 kg/ha/yr 0 kg/ha/yr 61 Foord Road, Run-O-Waters 800 L/day 12 mg/L 9600 mg/day 9600 mg/day 1500 kg/m3 233.60 m2 1 m 233.600 m3 350400 kg 140160 g 350400 kg 350400 kg 140160 g 350400 kg 140160 g 350400 kg 12803 g/yr 30 kg/ha/yr

s adjulit		1010
⊇•ັ^Át¦Áslat}oÁ^cat.	€HDF€ED€G	Ö
3.●*`^Á∳;¦Ásja?}oÁ*`à{´ã*●ã;}	GG∰F€ED€G	Ö

N

Ò K‰aa)& {{ā},*à ăåā},*O *{æaáB≿{[{ ÚKÁKEIFÌÁFÎÍÁ.ÏF

Ò kÁajadzã[å•[}O]¦^{ ãr^b≿[{ Èzĕ ÚKÁEI€€ÁHGFÁF€J

Pad;ā ÁÖ)çā[}{^}c^}œşkŐ[}•`[dā* W,ānĀ Brētār^{[:aəşkŐ[ā>rÊ Ù@iji@esbā[`:kŐas kŐ^}d^Éa>ÙV kGiGJ V,kkEIFAGA G+Ĩ,ÁEJÍI

ŠU VÁHĤ ÁÖÚÁ Í €€FÍ Î FÁZUUÜÖÁÜUQEÖÊÄÜWÞËJËY QE/ÒÜÙ environmental consulting Yæor, ær\###Uf\{, ær\ ŠÕCE#ŐUWŠÓWÜÞË WŠYCEÜÒÒ

	ÚÜUÚU ÇÕUÞÔC F€€{{}	ÙÒÖÁCEY VÌ DÚVWOÈÁSI ÚXÔÁÚQÍÒ	`) ĴÔŒ∕QUÞÁJ	ÞŠŸD		
	GÍ{{ÁQ	3ÖDÁÚUŠŸÁŰ	ÚŴÒ			a series
	ÒÝŴVQa	OÁÖY ÒŠŠ	Φ Õ			
	ÒÝŴVQ	ŐÁJPÒÖÙ				Colonia Colonia
	ÒÝŴVQa	₽ÕÁŒÔÔÒÙ	Ù			3 - 2
	ÒÝŴVQt	₽ÕÁÚUUŠÁC	EÜÒŒ			
\bigcirc	ÒÝŴVQt	οÂÜCEEÞΥ	ŒVÒÜÁVŒÞS	Ú		
	ÚÜUÚU	ÙÒÖÁÓWŒŠĊ	ŎŒĮŐÁÒÞXÒ	ŠUÚÒ		
					4	
XŴQÞ	Ölæjā*/ Y ŒU ÖOVO	^{áv} ąr∧k ∕òy œv(œsùáup() ÜÁTOEÞ(DÓVÁÞ[ÈE	TÓ TÓ	ÞVÁÚŠ	Œ
Ù	Ö¦æ;}K ÖT Ö^∙ã}^åK ÖT	Öæe^K G397€809€GI U`¦Á^∽^¦^}&^K ÏFFÍYY	Úæ]^¦ÂÙã^K QÙU/ÂÒ¢]æ)åÁOEH⁄ Ù&æ‡^K FKFÍ€€	Û ÈÐEĂÔ@&& KÁ ∖Ô[{] ^ơ Q•ັ^K çFÈE	₩Öær^K GEFF€ED€G	

UVPÒÜÁÚÜUÚÒÜVŸÁÓUWÞÖŒÜÒÒÙ

ÒÝŴVÆŐÁỜT ŒŹUÜÁÒÝŴVÆŐÁÖY ÒŠŠŒŐ ÇEUUUÙYŒ Œ∕ŐÆUÔŒ∕ŴÞĎ ÚÜUÚUÙÒÖÁÒ225X\ÒÞVÁÖQÚUÙO5Á0ËÙÒOEÁ æ)åÁÔŬQISQPÕÜÄÄHĨ€• {

G ÁÔUÞVUWÜÙ

ÒÝQÙVO⊳ÕÁÖOETÙ

ØŠWÙPÁKOBŠXÒ

OEDŮÁÜÒŠÒOEÙÒÁKOEŠXÒ

ÖÜŒ₽ŒŨÔÁÔ₽ŒÞÞÒŠÙ ÚÜU ÚU Ù Ò Ö ÁÙ W Ó Ö Q Q Q Þ 18 (A)

J∿∙ovajuąi}n∖	
⊇•`^Á{;¦Á&la^}oÁ^ca^	
⊇•ັ^Á[¦Á&jāN}oAtĭà{	[ã•ã]}

8/ajcaj}K.	AHHO 2020
^Á{¦Á&la∿}oÁ^ca∿	€ HF €ED€G
^Ái[¦ÁsiaN}oÁiĭà{´ã∙ãi}	COTF€ED€C

ę}	05]]¦[ç^å	Þ[¦@
T	ÙР	
)T	ÙР	Λ
		NI Y

The irrigation area should be split into equal zones. Each zone is to receive an even proportion of wastewater, using a sequencing valve

A) The irrigation pump must provide a minimum 20m head and a flow rate that matches the design output of the selected dripline. Flow rate will vary depending on emitter spacing, flow rate and lineal metres of line. Each area should be capable of

B) Filtration and flushing mechanism (see Insert A) - a filed flush valve must be installed on the return line to facilitate periodic flushing to the treatment tank. An additional filter flush valve should be installed downstream of the filed flush valve. A (minimum) 150 mesh; 100 micron cylindrical filter should to be

C) An automatic, hydraulically operated sequencing valve should be installed to deliver effluent evenly to each zone.

D) Air release valves must be installed at high points in each area. Additional air release valves may be required in undulating

E) Check valves are required for each irrigation field to facilitate periodic flushing. It must be install at at the lowest point of each sub-surface zone and shall be contained within a durable protective housing with a lilac lid to indicate

F) Distribution pipes should be 25mm uPVC or polyethylene pipe buried 300mm below the ground surface.

G) Flushing return manifold (See Inset A) should be 25mm uPVC or polyethylene pipe buried 100-150mm below the ground surface within the irrigation area. Outside this area, the pipe must be buried at a minimum of 300mm depth.

H) Pressure compensating (PC) subsurface drip line (typically 16mm) with emitters and laterals at 600mm (max. 1000mm) spacing and buried to a depth of 100-150mm below finished ground level. Only subsurface dripline specifically designed for effluent irrigation must be used.

Note: Where Soil depth is less than 0.25 m, this is considered not suitable for the majority of effluent disposal systems, with the exception of mound systems. Therefore, it is important to closely examine soil values, in particular soil depth, to ensure this is adequate for the proposed system, and that this is confirmed during the

NSW	Drawing Title: SUBSURFACE IRRIGATION STANDARD					
	DRAWING - NON-STDNET CATCHWENT AP					
n	Drawn:	Date:	Paper Size:	Q.A. Check:	Date:	
ix		31/10/2022	ISO Expand A3			
	Designed:	Our reference:	Scale: NTS	Dwg. No.	Issue:	

WEM Summary General Information

WEM model ID	3119790	Associated DA nun	nber			
Model description						
Consultancy	Harris Environmental Consulting	Consultant	m	att@harris .au	environme	ental.co
Consultant reference number	61 Foord Road					
Council	Goulburn Mulwaree	Assessing officer				
Nominated lot	336//750015	Associated lots	Lot	Section	Plan	
Development class	Subdivision unsewered <=3 lots		336			750015
Date of model run	10/3/2024 3:30:38 PM					

WEM Model Run Summary

Any of the sub-surface plumes reaches:

Lot boundary	No
Drainage depression	No
Top bank of watercourse	No
Another disposal field or onsite stormwater management system	No
Within 50m, and up gradient of, a licensed drinking water bore	No

Proposed Front End Design

Length (across slope)(m)	20.0	Width (up slope)(m)	18.5	
Proposed area(m2)	370.0	Minimum Required area	365.0	
Number of trenches	0	(112)		
Effluent volume proposed (l/day)	800			
Effluent volume calculated (l/day)	800			

WEM Model Inputs

Location

	Easting	9545532.470524	Northing	4329920.064430
	Slope (m/m)	0.04520	Slope is suitable based on site inspection (Applicable to some disposal systems on	N/A
Dev	velopment		steep slopes)	
	Development type	Dwellings	Development detail	4 bedrooms

WEM Summary

	Water supply type	Rainwater	Spa Bath	No
	Continuous system use	Yes		
	Treatment system	AWTS standard	Disposal system	Irrigation sub-surface
Site	e			
	Lot size(m2)	96786		
	Subject to severe frost	No	Bulk density(g/cm3)	1.50
	Vegetation for nutrient uptake	Lawn - fully managed (clippings removed)	Phosphorus sorption (mg/kg)	400
	Soil depth (to impermeable layer) (m)	1.00	Soil structure	High/moderate
	Saturated hydraulic conductivity (Ksat)(m/day)	0.75		
	Soil texture	Clay loams		
Effl	uent disposal risk factors			
	Depth to water table	0.4 - 1.0		
	Flood potential of disposal system	Above 1 in 50 year ARI		
	Landform score	Hill crests, convex side slopes an	d plains	
	Run-on and upslope seepage	None-low, diversion possible		
	Rock outcrops, scarp and bedrock	< 5%		
	Distance to drainage dpression	> 50		
	Distance to watercourses and water supply reservoirs	> 120		
	Distance to licenced drinking water bores	> 150		

version 3

WEM Summary WEM Plume Map

WEM Summary

Legend:		
	Selected lots	
	Efffluent management area	
	Phosphorus	
	Nitrogen	
	Faecal colifroms	

version 3

Assessment Summary

General Information

Consultancy	Harris Environmental Consulting
Consultant	matt@harrisenvironmental.com.au
Consultant reference number	61 Foord Road
DA number	-
Assessing officer	-
Council	Goulburn Mulwaree
Development class	Subdivision unsewered <=3 lots
Date of assessment	10/23/2024 8:47:28 AM

Assessment Summary

Assessment status	Lodged	
System outcome	Satisfied	User outcome
WaterNSW concurrence outcome		
Determination outcome	Pending	Determination date

Pre-Assessment

Located within Sydney drinking water catchment?	Yes
Is development consistent with any existing SCA/WaterNSW S88 instruments on title?	Yes
Crown perpetual leasehold land?	No
Water quality impact ?	Yes
Documentation is complete?	Yes
Does Water Cycle Management Study meet WaterNSW/Council requirements?	Yes

Description

Module 2

Development site slope	All < 20%
Construction area(m2)	1595
Swimming pool?	No
(if yes) Only a swimming pool proposed?	-
Proposed system consistent with recommendation in wastewater management report?	Yes
Wastewater treatment type emerging technology?	No
Pump-out?	No
(if yes) Will the property be connected to the sewer in the near future?	-

Lot	Section	Plan
336		750015

Assessment Summary

Adequate SSSQM certificate provided?	Yes	
Development site within 1% AEP flood level flood prone land?	No	
More than 250m2 of vegetation clearing for dwellings/access/roads/APZ:s?		
(if yes) Have appropriate management measures been proposed?	-	
Significant cut and fill required for dwellings/access/roads?	No	
(if yes) Have appropriate management measures been proposed?	-	
Dwellings/access/roads or within 40m of watercourse?	No	
(if yes) Have appropriate management measures been proposed?	-	
Drainage feature crossing Proposed?	No	
(if yes) Have appropriate management measures been proposed?	-	
Development areas has widespread salinity and/or sodicity risk?	No	
(if yes) Have appropriate management measures been proposed?	-	
Other site constraints?	No	
(if yes) Have appropriate management measures been proposed?	-	

All road/access works wholly contained within the road reserve **N/A** or defined easements?

Wastewater Effluent Models

Model Name	Model Run	Model Reviewed	Model Nominated
1	Y	Y	
1.1	Y	Y	Y

Site Visit

Site inspection date	26 Sep 2024
inspectors name	Sean Harris
Does EMA meet boundary and infrastructure setback and WaterNSW's buffer requirements?	Y
Are the soil parameters used in the WEM consistent with the site?	Y
Does this assessment match site visit observations (including major site limitations)?	Y

Required NorBE conditions of consent

Assessment Summary

Condition	Assigned At
The applicant shall implement the proposed stormwater management measures identified on the Small-Scale Stormwater Quality Model (SSSQM) certificate to prevent impacts on water quality.	10/3/2024 11:25:11 AM
An Erosion and Sediment Control Plan shall be prepared by a person with knowledge and experience in the preparation of such plans for all works required as part of the development (of each stage for staged development). The Plan shall: <bstyle="margin-right: 7px"="">• meet the requirements outlined in Chapter 2 of the NSW Landcom's Soils and Construction: Managing Urban Stormwater (2004) manual <bstyle="margin-right: 7px"="">• be prepared prior to issuance of a Construction Certificate and be to the satisfaction of Council, and <bstyle="margin-right: 7px"="">• be prepared prior to prevent sediment or polluted water leaving the construction site or entering any natural drainage system or stormwater drain. drain. </br></bstyle="margin-right:></br></bstyle="margin-right:></bstyle="margin-right:>	10/3/2024 11:25:11 AM

Assessment notes

No notes

